數(shù)學(xué)是文科生的考試科目里難度比較大的一科,對于很多數(shù)學(xué)學(xué)習(xí)基礎(chǔ)弱的學(xué)生,數(shù)學(xué)無疑就是噩夢,想考好可是能力有限,其實(shí)數(shù)學(xué)成績的進(jìn)步?jīng)]有大家想象的這么難,只要找到正確的學(xué)習(xí)數(shù)學(xué)的方法,文科生一樣可以把數(shù)學(xué)學(xué)得好!伊頓教育在高考輔導(dǎo)中做得一直都很好, 有高三學(xué)生的高考科目的補(bǔ)習(xí),有不同的班型可以供大家選擇,滿足不同水平和學(xué)習(xí)能力的學(xué)生補(bǔ)習(xí),下面是小編整理的文科數(shù)學(xué)一輪復(fù)習(xí)的要點(diǎn)!
一輪復(fù)習(xí)重點(diǎn)及常考內(nèi)容
必修一
第一章:集合和函數(shù)的基本概念,錯(cuò)誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個(gè)不小心就是五分沒了。次一級的知識點(diǎn)就是集合的韋恩圖,會畫圖,集合的“并、補(bǔ)、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中要反復(fù)去記這些概念,較好的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí)基本就沒多大問題。函數(shù)圖像是這一章的重難點(diǎn),而且圖像問題是不能靠記憶的,需要要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是??汲ee(cuò)點(diǎn)。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問題也要了解清楚。
第三章:函數(shù)的應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實(shí)就是 的實(shí)根,即函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會在這三者之間的靈活轉(zhuǎn)化,以求能較簡單的解決問題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加 得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習(xí)強(qiáng)化。這二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)倒不算難。
必修二
第一章:空間幾何。三視圖和直觀圖的繪制不算難。但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫出實(shí)物。這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實(shí)物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推。有需要的還要在做題時(shí)結(jié)合草圖,不能單憑想象。后面的錐體柱體臺體的表面積和體積,把公式記牢問題就不大。做題表求表面積時(shí)注意好到底有幾個(gè)面,到底有沒有上下底這類問題就可以。
第二章:點(diǎn)、直線、平面之間的位置關(guān)系。這一章除了面與面的相交外,對空間概念的要求不強(qiáng),大部分都可以直接畫圖,這就要求學(xué)生要多看圖,自己畫草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問題。關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語言、文字語言、數(shù)學(xué)表達(dá)式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,難度在于對這個(gè)概念無法理解,即知道有這個(gè)概念,但就是無法在二面里面做出這個(gè)角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒有什么捷徑可走。
第三章:直線與方程。這一章主要講斜率與直線的位置關(guān)系。只要搞清楚直線平行、垂直的斜率表示問題就不大了。需要格外注意的是當(dāng)直線垂直時(shí)斜率不存在的情況,這是常考點(diǎn)。另外直線方程的幾種形式,記得一般公式會用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線的距離、直線與直線的距離,記住公式,直接套用。
第四章:圓與方程。能熟練的把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一遍含根號,另一邊不含,這時(shí)就要注意開方后定義域或值域的限制;通過點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離與圓半徑的大小關(guān)系判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交直線的多種情況,這也是常考點(diǎn)。
必修三
總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計(jì)算。程序框圖與三種算法語句的結(jié)合,及框圖的算法表示。秦九韶算法是重點(diǎn),要牢記算法的公式。統(tǒng)計(jì)就是對一堆數(shù)據(jù)的處理,考試也是以計(jì)算為主,會從條形圖中計(jì)算出中位數(shù)等數(shù)字特征,對于回歸問題,只要記住公式,也就是個(gè)計(jì)算問題。概率,主要就只幾何概型、古典概型。集合概型只要會找表示所求事件的長度面積等;古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函數(shù)。考試考試題。誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì)只要記住會畫圖就行,難度在于三角函數(shù)形函數(shù) 的振幅、頻率、周期、相位、初相,及根據(jù)較值計(jì)算A、B的值和周期,及 等變化時(shí)圖像及性質(zhì)的變化,這一知識點(diǎn)內(nèi)容較多,需要多花時(shí)間,首先要記憶,其次要多做題強(qiáng)化練習(xí),只要能踏踏實(shí)實(shí)去做,也不難掌握,畢竟不存在理解上的難度。
第二章:平面向量。個(gè)人覺得這一章難度較大,這也是我掌握較差的一章。向量的運(yùn)算性質(zhì)及三角形法則平行四邊形法則難度都不大,只要在計(jì)算的時(shí)候記住要同起點(diǎn)的向量。向量共線和垂直的數(shù)學(xué)表達(dá),這是計(jì)算當(dāng)中經(jīng)常要用的公式。向量的共線定理、基本定理、數(shù)量積公式。難點(diǎn)在于分點(diǎn)坐標(biāo)公式,首先要準(zhǔn)確記憶。向量在考試過程一般不會單獨(dú)出現(xiàn),常常是作為解題要用的工具出現(xiàn),用向量時(shí)要首先找出合適的向量,個(gè)人認(rèn)為這個(gè)比較難,常常找不對。有同樣情況的同學(xué)建議多看有關(guān)題的圖形。
第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會用到的公式,所以需要要記牢。由于量比較大,記憶難度大,所以建議用紙寫之后貼在桌子上,天天都要看。而且 的三角函數(shù)變換都有的規(guī)律,記憶的時(shí)候可以結(jié)合起來去記。除此之外,就是多練習(xí)。要從多練習(xí)中找到變換的規(guī)律,比如 一般都要 化等等。這一章也是考試考試,所以要重點(diǎn)掌握。
必修五
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數(shù)列??荚嚳荚嚒5炔畹缺葦?shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來很容易,但做題卻不會做的類型。考試題中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。
第三章:不等式。這一章一般用線性規(guī)劃的形式來考察。這種題一般是和實(shí)際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖。然后再根據(jù)實(shí)際問題的限制要求求較值。
選修中的簡單邏輯用語、圓錐曲線和導(dǎo)數(shù):邏輯用語只要弄懂充分條件和需要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會用選擇題考這一知識點(diǎn),難度不大;圓錐曲線一般作為考試的題出現(xiàn)。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問難打一般會很大,而且較費(fèi)時(shí)間。所以不建議做。
這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和較值的方法。一般會考察用導(dǎo)數(shù)求較值,會用導(dǎo)數(shù)公式就難度不大。
上面就是為大家整理的輪復(fù)習(xí)的數(shù)學(xué)重點(diǎn)知識,一輪復(fù)習(xí)要扎扎實(shí)實(shí),有困難想補(bǔ)習(xí)的學(xué)生可以考慮報(bào)名伊頓教育的一對一補(bǔ)習(xí)!